
Abstract In cases of traumatic brain injury (TBI) in which
the patient survived for only a short period of time and
was without macroscopic changes at autopsy, it is difficult
to diagnose TBI. To detect early diagnostic markers of
diffuse axonal injury (DAI), real-time quantitative reverse
transcriptase-polymerase chain reaction (RT-PCR) in an
experimental head trauma model of rat was chosen. The
β-amyloid precursor protein (β-APP) is a well-known di-
agnostic marker of DAI which can be detected by im-
munolabeling as early as 1.5 h after injury. β-APP has a
binding protein, FE65, which is expressed in the brain of
Alzheimer’s disease patients along with β-APP, but no in-
volvement with brain injury has been reported. Neuron-
specific enolase (NSE) is also a useful marker of DAI. We
found that FE65 expression increased dramatically as early
as 30 min after injury and decreased after peaking 1 h post-
injury, although NSE showed no significant changes. These
results suggest that real-time PCR of FE65 mRNA is use-
ful for the diagnosis of DAI in forensic cases.
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Introduction

In forensic autopsy cases with no signs of subdural hem-
orrhage, epidural hematoma, or brain contusion, and in
which the patient survives only a short time following
head injury, it is very difficult to diagnose brain injury.

Recent studies in animal [1, 2, 3] and human brain tissues
[4, 5, 6, 7, 8, 9, 10, 11] have shown that β-APP is a marker
for diffuse axonal injury (DAI) in traumatic brain injury
cases. β-APP is a cell-surface protein and a normal com-
ponent of neuronal cells [4]. It is processed by the Golgi
apparatus and carried along axons by fast anterograde
transport [12, 13]. DAI has been reported after traffic ac-
cidents [14, 15, 16], falls [14, 17], and assaults [18, 19]
and is produced by mechanical forces shearing the fibers
at the moment of impact [20, 21, 22]. A large number of
traumatic brain injury cases are fatal in less than 1 h and
before DAI histology changes can be detected. Histology
changes associated with DAI, such as axonal retraction
balls or axonal enlargement, are difficult to detect with
routine staining methods until 12–15 h post-injury [14, 23,
24, 25]. Many other techniques including immunohisto-
chemical labeling have been developed to diagnose DAI
in its early stages [4, 5, 6, 7, 9, 17, 26, 27], although these
still require at least 1.5 h after injury to be able to detect
DAI [28].

Recently, the β-APP adapter protein FE65 was identi-
fied [29, 30, 31], which is a binding protein expressed in
brain tissues and nerve ganglia [29, 32, 33, 34, 35]. FE65
has been proposed as an important adapter protein of a
multiprotein complex associated with the β-APP intracel-
lular domain [29] and has been detected in the brain of
Alzheimer’s disease patients [34, 36, 37, 38, 39]. FE65
overexpression in cultured cells promotes β-APP translo-
cation to the cell surface and increases β-amyloid peptide
secretion [32]. It also regulates cell movement [40], but
other functions are unclear [40]. To date there has been no
attempt to identify FE65 involvement in traumatic brain
injury. In the present study, FE65 mRNA was chosen to
study DAI because FE65 directly binds to the β-APP in-
tracellular domain and FE65 up-regulation may be related
to β-APP accumulation in DAI. In addition, neuron-spe-
cific enolase (NSE), which has been detected as early as
1.5 h after injury by immunostaining [28], has also been
shown to be a reliable marker for the diagnosis of DAI
[28, 41]. NSE is localized in neurons and axons [42, 43]
and NSE mRNA is expressed in multiple neuronal regions
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[44]. NSE is an important glycolysis enzyme, converting
2-phospho-D-glycerate to phosphoenolpyruvate [45]. In
the field of brain injury pathology NSE has been reported
as a diagnostic marker for DAI [28], cerebral ischemia
[46, 47] and status epilepticus [44]. The NSE detected by
immunohistochemistry is concentrated by interruption of
axonal transport [13, 48, 49, 50, 51, 52, 53].

Since a method for specific mRNA quantitation by the
polymerase chain reaction (PCR) has been developed [54,
55], the real-time reverse transcriptase-polymerase chain
reaction (RT-PCR) method has been used in many fields,
including neuropathology [56, 57, 58], demonstrating its
applicability for studying brain injury pathology [59]. This
study evaluated the efficiency of the real-time PCR method
for FE65 and NSE mRNA quantitation and early DAI di-
agnosis in rats.

Materials and methods

Experimental head injury

Sprague-Dawley (SD, n=38) male rats, weighing between 550–
650 g, were divided into 9 groups: naive controls (n=3), sham op-
erations (n=2), and 0.5, 1, 3, 6, 12, 24, and 48 h (n=4–5 each) post-
traumatic brain injury groups. Animals were kept under a 12 -h
light-dark cycle with food and water ad libitum. Traumatic brain
injury was induced using a slightly modified version of the exper-
imental head trauma model of Marmarou et al. [60]. Animals were
anesthetized with sodium pentobarbital (50 mg/kg intraperitonally).
Instead of the 10 mm diameter metal disk used in the original model,
a coin (Japanese 10-yen coin, diameter 23.5 mm, width 1.5 mm,
weight 4.5 g, 95% copper) was cemented to the skull vault with one
drop of dental cement at the midline area of the coronal and lamb-
doid sutures. With this modification, depression skull fractures can
be avoided. Since the coin diameter is bigger than the transverse
diameter of the rat skull (less than 20 mm), the coin edge does not
touch the skull. In addition, heavier rats were employed to prevent
skull fracture. After the rat was placed on a foam bed, a 500 g cop-
per weight was raised and allowed to fall freely from 1.5 m through
a Plexiglas tube onto the coin. Sham-operated animals received
identical anesthesia and surgery, but not the impact injury.

The experimental procedures followed the “Principles of labo-
ratory animal care” (NIH publication No. 85-23, revised 1985) and
were in accordance with the Guidelines for Animal Experimenta-
tion for our university.

Tissue preparation

At 0.5, 1, 3, 6, 12, 24, and 48 h (n=4–5 each) after traumatic brain
injury, rats were sacrificed with a lethal dose of pentobarbital. The
brain was removed without perfusion, then cut into six coronal
sections. One section, which included the right cerebral cortex,
subcortical white matter, corpus callosum, and hippocampus, was
immediately frozen at –80°C until used for RNA extraction. A sec-
ond section was fixed in 10% paraformaldehyde in 0.1 M sodium
phosphate buffer and paraffin-embedded for histopathological
preparation.

Total RNA preparation

Tissue was excised from one frozen section, containing the right
cerebral cortex, subcortical white matter, corpus callosum, and
hippocampus. The opposite side of the brain section was kept
frozen in case of technical failure. The tissue was immediately ho-
mogenized. Total RNA was prepared from the homogenate using

the PolyATtract System 1000 (Promega, Madison, WI) following
the manufacturer’s protocol.

Primer and probe design for real-time PCR

FE65 mRNA was amplified with the primers FE65 mRNA for-
ward primer (5’-GCCTCCTTCTGCTGTCACATG-3’) and FE65
mRNA reverse primer (5’-AGGCTGTGCAGGCTGCA-3’) which
produced an 89 bp PCR product. NSE mRNA was amplified with
the primers NSE mRNA forward primer (5’-TGATGACCTGAC-
GGTGACCA-3’) and NSE mRNA reverse primer (5’-CAAACA-
GTTGCAGGCCTTCTC-3’) which produced a 91 bp PCR product.
Detection probes (TaqMan Probe, PE Applied Biosystems, Foster
City, CA) specific to rattus FE65 mRNA and NSE mRNA were as
follows: FE65 mRNA probe 5’-(FAM)TGCGAGCCCAATGCTG-
CCAGT(TAMRA)-3’ and NSE mRNA probe 5’-(FAM)CCCCA-
AGCGCATCGAGCGG(TAMRA)-3’. Primers and TaqMan probes
were designed using the primer design software Primer Express 1.5
(PE Applied Biosystems) based on the common rat cDNA sequence
region for the establishment of a quantitative assay method for gene
expression levels using real-time PCR. We used primers and a
VIC-labeled rodent TaqMan probe for detection of the housekeep-
ing gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(PE Applied Biosystems).

Real-time PCR

Real-time PCR is a method for measuring the accumulation of PCR
products during the reaction with a spectrophotometer. RT-PCR,
which amplifies cDNA, is an indispensable method for quantifying
small amounts of RNA. Real-time PCR templates were obtained by
a reverse transcriptase reaction of total RNA using AmpliTaq Gold
DNA polymerase (PE Applied Biosystems). The template was
mixed with Platinum Quantitative PCR SuperMix-UDG, which
contains 1.5 U Platinum Taq DNA polymerase, 20 mM Tris-HCl
(pH 8.4), 50 mM KCl, 3 mM MgCl2, 200 µM dGTP, 200 µM
dATP, 200 µM dCTP, 400 µM dUTP, and 1 U uracil DNA glyco-
sylase (Invitrogen, Carlsbad, CA), TaqMan probe, and 0.05 µM of
each primer. All reactions were performed in an ABI Prism 7700
sequence detector (PE Applied Biosystems). The thermal cycling
conditions included a 95°C predenaturation step for 10 min, ther-
mal cycling with 45 cycles of 95°C denaturation for 15 s and 60°C
annealing and extension for 1 min. The amount of cDNA in the
samples was estimated with standard curves representing the log of
the input amount (log starting cDNA molecules) as x and the thresh-
old cycle as y. The expression rate was obtained by normalizing
the amount of FE65 mRNA or NSE mRNA to that of GAPDH.

Histopathological procedure

For histopathological studies, brains were sectioned in the coronal
plane, before paraffin-embedding. Brain histopathological changes
were observed in the coronal sections at the frontal horn level. Sec-
tions (5 µm thick) were cut with a rotary microtome and prepared
with Bodian staining to verify the axonal changes.

Results

Histopathology

Experimental head trauma resulted in diffuse axonal dam-
age in rat brains as determined by Bodian staining and the
observed axonal changes are shown in Table 1. In control
animals, axons were manifested in a longitudinal or trans-
verse arrangement as thin fibers (Fig. 1A). In the groups
sacrificed at 0.5 and 1 h after injury, only a few axons
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showed waving and enlargement (Fig. 1B). In the 6 -h
group, the numbers of enlarged and waving axons in-
creased and retraction balls were seen in the 12 -h group
(Fig. 1C). The alterations were most severe in rat brains
24 h after injury (Fig. 1D).

Real-time PCR

Before analyzing samples by real-time PCR, the presence
of both FE65 and NSE mRNA in each sample was con-
firmed by agarose gel electrophoresis. Figure 2A shows
the time course of FE65 mRNA expression after brain in-
jury. The significant induction of FE65 mRNA expression

was observed as early as 0.5 h following injury, reaching a
peak at 1 h (p<0.05), and gradually decreasing to the con-
trol level 12 h after injury. Interestingly, it increased again
at 24 h, finally decreasing at 48 h.

Figure 2B shows the time course of NSE mRNA ex-
pression after traumatic brain injury. Although the NSE
gene expression showed a peak at 24 h after injury, there
were no significant changes in NSE mRNA expression
when normalized to GAPDH expression.

Discussion

In previous studies, many approaches have been carried
out for establishing the forensic pathological diagnosis of
traumatic brain injury. Several markers or changes in hu-
man brain tissue after traumatic brain injury have been in-
vestigated using immunohistochemistry [28, 61, 62, 63,
64, 65, 66, 67, 68, 69]. The samples used in these studies
were derived from the brains of autopsy cases that showed
obvious macroscopic changes such as skull fracture, epi-
dural hemorrhage, subdural hemorrhage, subarachnoidal
hemorrhage or cerebral contusions. DAI can be found in
cases that sustained mild traumatic brain injury with no
macroscopic changes at autopsy. It is difficult to diagnose
DAI in patients who survived for only a short time after
injury because DAI cannot be detected until 12–15 h post-
injury with routine staining methods [14, 23, 24, 25]. The
aim of the present study was to discover an early sensitive
marker of DAI. In previous studies, the principal method
for diagnosing DAI was immunohistochemistry, and β-APP
and NSE were detectable in human brain as early as 1.5 h
post-injury [28]. The axonal damage induces a local inter-
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Table 1 Axonal changes observed using Bodian staining

Groups Axonal changes

Waving Enlargement RB

Control (n=3) – – – – – – – – –
Sham (n=2) – – – – – –
0.5 h (n=4) – – – + – + – – – – – –
1 h (n=4) + – – – – + – – – – – –
3 h (n=5) + + + – + – – – – – – – – – –
6 h (n=5) + + + + – – – – + + – – – – –
12 h (n=5) + + + + + + + + + + + + – + –
24 h (n=5) + + + + – + + + + – + – – + –
48 h (n=5) + + + + + + – – – + – – – + –

Each symbol indicates the result for 1 rat.
(+) or (–) indicates the presence or absence of waving, of axon, ax-
onal enlargement or RB, respectively.
RB, retraction balls.

Fig. 1 A Bodian staining in
the parasagital subcortical
white matter of the control rat,
B 1 h injured rat, C 12 h in-
jured rat and D 24 h injured
rat. Waving and enlargement
of axons (arrows) and retrac-
tion balls (arrowheads) were
observed in the rat that sur-
vived greater than 6 h. The
findings were severe in the 
12 h and 24 h injured rats 
(C, D). (Bar 100 µm)



ruption of axonal transport, which makes both β-APP and
NSE detectable. In experimental brain injury models, the
detection of several different markers has been reported
from between 1 h to 1 day after injury [70, 71, 72, 73, 74,
75]. Although tumor necrosis factor-α (TNFα) reactions
were detected as early as 30 min after injury by immuno-
electron microscopy [70], it may not be specific to DAI.

In the present study, the application of a recently de-
veloped real-time PCR method was established for the de-
tection of FE65 and NSE mRNA. In comparison with other
molecular biological methods, real-time PCR is a rapid and
sensitive method for quantifying small amounts of PCR
products [54] and RT-PCR products [55]. It allows one to
analyze a relatively large number of samples in a short pe-
riod of time [56]. Real-time PCR has many advantages,
but also some limitations, including the requirement of ex-
pensive instrumentation [56]. The applicability and possi-
ble usefulness of quantitative RT-PCR have been shown

in human forensic autopsy cases [76] and pathological au-
topsy cases [37]. Using cloned plasmid DNA as a stan-
dard and a housekeeping gene (GAPDH) to normalize the
data, we were able to determine the absolute starting copy
number of a given mRNA using real-time PCR. It should
be emphasized that this quantitation is based on using
plasmid DNA as the template for the standard measure of
reverse-transcribed mRNA, with the assumption that the
mRNA amplification rates are equivalent [58].

To investigate whether an early sensitive marker exists,
we began with an animal model of traumatic brain injury.
We chose the impact acceleration model [60] from several
different experimental models available [60, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86] because it is economical, tech-
nically simple, and produces diffuse axonal injury similar
to that described in humans without focal damage [87].
Our results showed widespread axonal damage, such as
enlarged and waving axons in rats more than 6 h after in-
jury and retraction balls, a hallmark of DAI, were seen af-
ter 12 and 24 h (Fig. 1) without obvious traumatic damage.
These results are consistent with the histology of DAI de-
scribed in humans [14, 23, 24, 25].

In this study, the FE65 mRNA expression level showed
an increase at 0.5 h, reached a peak 1 h after injury and
then decreased to control levels at 12 h. It increased again
at 24 h, then returned to control levels at 48 h. On the
other hand, NSE mRNA expression remained unchanged
up to at least 48 h after injury.

Our study found that the real-time PCR method is a
sensitive procedure for detecting FE65 mRNA in the rat
brain in the early stages of DAI, as early as 30 min post-
injury. Of all the proteins that localize in axons, FE65 may
be implicated in DAI and reacts to the damage at a very
early stage. Although the results of real-time PCR for NSE
are inconsistent with previous immunohistochemical stud-
ies [28, 41], there is a similar report by Schreiber et al. who
reported that the NSE mRNA level decreased 5 days after
injury [44]. NSE may react to damage later than FE65.

In conclusion, using real-time PCR we have demon-
strated that FE65 mRNA is an early DAI diagnostic marker
in the experimental impact acceleration rat model. Our
aims for future studies are to apply this detection method
to human autopsy cases in forensic practice and to inves-
tigate how FE65 protein is involved in the pathogenic
mechanism of DAI formation, since our method demon-
strates several advantages over previous studies. FE65 is a
sensitive and specific marker of DAI and is induced as
early as 30 min after injury. Real-time PCR is a rapid and
sensitive method for quantifying small amounts of RT-PCR
products [55] in a short time. Our quantitative method
may be better than morphological analysis for diagnosing
DAI in forensic practice [70]; evaluating the samples
morphologically is often difficult because of changes in
the postmortem period. To the best of our knowledge, this
is the first report employing real-time PCR for the study
of DAI. These results are expected to support the diagno-
sis of DAI in forensic cases in which the patient survived
for only a short time after traumatic brain injury and were
without obvious focal damage.
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Fig. 2 A Real-time quantitative PCR analysis of FE65 and B NSE
mRNA expression in the rat brain. mRNA levels are expressed as
a percentage of control animal expression. One-way ANOVA was
performed, followed by the Dunnett’s multiple comparison test to
evaluate statistical significance (*p<0.05)
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